Between-Subjects Design | Examples, Pros & Cons

In experiments, you test the effect of an independent variable by creating conditions where different treatments (e.g. a placebo pill vs a new medication) are applied.

In a between-subjects design, or a between-groups design, every participant experiences only one condition, and you compare group differences between participants in various conditions. It’s the opposite of a within-subjects design, where every participant experiences every condition.

A between-subjects design is also called an independent measures or independent-groups design because researchers compare unrelated measurements taken from separate groups.

Continue reading: Between-Subjects Design | Examples, Pros & Cons

Within-Subjects Design | Explanation, Approaches, Examples

In experiments, a different independent variable treatment or manipulation is used in each condition to assess whether there is a cause-and-effect relationship with a dependent variable.

In a within-subjects design, or a within-groups design, all participants take part in every condition. It’s the opposite of a between-subjects design, where each participant experiences only one condition.

A within-subjects design is also called a dependent groups or repeated measures design because researchers compare related measures from the same participants between different conditions.

All longitudinal studies use within-subjects designs to assess changes within the same individuals over time.

Continue reading: Within-Subjects Design | Explanation, Approaches, Examples

Triangulation in Research | Guide, Types, Examples

Triangulation in research means using multiple datasets, methods, theories and/or investigators to address a research question. It’s a research strategy that can help you enhance the validity and credibility of your findings.

Triangulation is mainly used in qualitative research, but it’s also commonly applied in quantitative research. If you decide on mixed methods research, you’ll always use methodological triangulation.

Examples: Triangulation in different types of research
  • Qualitative research: You conduct in-depth interviews with different groups of stakeholders, such as parents, teachers, and children.
  • Quantitative research: You run an eye-tracking experiment and involve three researchers in analysing the data.
  • Mixed methods research: You conduct a quantitative survey, followed by a few (qualitative) structured interviews.

Continue reading: Triangulation in Research | Guide, Types, Examples

What Is Quantitative Research? | Definition & Methods

Quantitative research is the process of collecting and analysing numerical data. It can be used to find patterns and averages, make predictions, test causal relationships, and generalise results to wider populations.

Quantitative research is the opposite of qualitative research, which involves collecting and analysing non-numerical data (e.g. text, video, or audio).

Quantitative research is widely used in the natural and social sciences: biology, chemistry, psychology, economics, sociology, marketing, etc.

Quantitative research question examples
  • What is the demographic makeup of Singapore in 2020?
  • How has the average temperature changed globally over the last century?
  • Does environmental pollution affect the prevalence of honey bees?
  • Does working from home increase productivity for people with long commutes?

Continue reading: What Is Quantitative Research? | Definition & Methods

What Is Qualitative Research? | Methods & Examples

Qualitative research involves collecting and analysing non-numerical data (e.g., text, video, or audio) to understand concepts, opinions, or experiences. It can be used to gather in-depth insights into a problem or generate new ideas for research.

Qualitative research is the opposite of quantitative research, which involves collecting and analysing numerical data for statistical analysis.

Qualitative research is commonly used in the humanities and social sciences, in subjects such as anthropology, sociology, education, health sciences, and history.

Qualitative research question examples
  • How does social media shape body image in teenagers?
  • How do children and adults interpret healthy eating in the UK?
  • What factors influence employee retention in a large organisation?
  • How is anxiety experienced around the world?
  • How can teachers integrate social issues into science curriculums?

Continue reading: What Is Qualitative Research? | Methods & Examples

Type I & Type II Errors | Differences, Examples, Visualizations

In statistics, a Type I error is a false positive conclusion, while a Type II error is a false negative conclusion.

Making a statistical decision always involves uncertainties, so the risks of making these errors are unavoidable in hypothesis testing.

The probability of making a Type I error is the significance level, or alpha (α), while the probability of making a Type II error is beta (β). These risks can be minimized through careful planning in your study design.

Example: Type I vs Type II error
You decide to get tested for COVID-19 based on mild symptoms. There are two errors that could potentially occur:

  • Type I error (false positive): the test result says you have coronavirus, but you actually don’t.
  • Type II error (false negative): the test result says you don’t have coronavirus, but you actually do.

Continue reading: Type I & Type II Errors | Differences, Examples, Visualizations

What is Effect Size and Why Does It Matter? (Examples)

Effect size tells you how meaningful the relationship between variables or the difference between groups is. It indicates the practical significance of a research outcome.

A large effect size means that a research finding has practical significance, while a small effect size indicates limited practical applications.

Note
There are several ways to report your results. In this article, we follow APA guidelines.

Continue reading: What is Effect Size and Why Does It Matter? (Examples)